Yos9p and Hrd1p mediate ER retention of misfolded proteins for ER-associated degradation
نویسندگان
چکیده
The endoplasmic reticulum (ER) has an elaborate quality control system, which retains misfolded proteins and targets them to ER-associated protein degradation (ERAD). To analyze sorting between ER retention and ER exit to the secretory pathway, we constructed fusion proteins containing both folded carboxypeptidase Y (CPY) and misfolded mutant CPY (CPY*) units. Although the luminal Hsp70 chaperone BiP interacts with the fusion proteins containing CPY* with similar efficiency, a lectin-like ERAD factor Yos9p binds to them with different efficiency. Correlation between efficiency of Yos9p interactions and ERAD of these fusion proteins indicates that Yos9p but not BiP functions in the retention of misfolded proteins for ERAD. Yos9p targets a CPY*-containing ERAD substrate to Hrd1p E3 ligase, thereby causing ER retention of the misfolded protein. This ER retention is independent of the glycan degradation signal on the misfolded protein and operates even when proteasomal degradation is inhibited. These results collectively indicate that Yos9p and Hrd1p mediate ER retention of misfolded proteins in the early stage of ERAD, which constitutes a process separable from the later degradation step.
منابع مشابه
A Luminal Surveillance Complex that Selects Misfolded Glycoproteins for ER-Associated Degradation
How the ER-associated degradation (ERAD) machinery accurately identifies terminally misfolded proteins is poorly understood. For luminal ERAD substrates, this recognition depends on their folding and glycosylation status as well as on the conserved ER lectin Yos9p. Here we show that Yos9p is part of a stable complex that organizes key components of ERAD machinery on both sides of the ER membran...
متن کاملDistinct Ubiquitin-Ligase Complexes Define Convergent Pathways for the Degradation of ER Proteins
Many misfolded endoplasmic reticulum (ER) proteins are eliminated by ERAD, a process in which substrates are polyubiquitylated and moved into the cytosol for proteasomal degradation. We have identified in S. cerevisiae distinct ubiquitin-ligase complexes that define different ERAD pathways. Proteins with misfolded ER-luminal domains use the ERAD-L pathway, in which the Hrd1p/Hrd3p ligase forms ...
متن کاملKey Steps in ERAD of Luminal ER Proteins Reconstituted with Purified Components
Misfolded proteins of the endoplasmic reticulum (ER) are retrotranslocated into the cytosol, polyubiquitinated, and degraded by the proteasome, a process called ER-associated protein degradation (ERAD). Here, we use purified components from Saccharomyces cerevisiae to analyze the mechanism of retrotranslocation of luminal substrates (ERAD-L), recapitulating key steps in a basic process in which...
متن کاملRetrotranslocation of a Misfolded Luminal ER Protein by the Ubiquitin-Ligase Hrd1p
Misfolded, luminal endoplasmic reticulum (ER) proteins are retrotranslocated into the cytosol and degraded by the ubiquitin/proteasome system. This ERAD-L pathway requires a protein complex consisting of the ubiquitin ligase Hrd1p, which spans the ER membrane multiple times, and the membrane proteins Hrd3p, Usa1p, and Der1p. Here, we show that Hrd1p is the central membrane component in ERAD-L; ...
متن کاملThe Hrd1p ligase complex forms a linchpin between ER-lumenal substrate selection and Cdc48p recruitment.
Misfolded proteins of the endoplasmic reticulum (ER) are targeted to the cytoplasm for proteasomal degradation. Key components of this process are ER membrane-bound ubiquitin ligases. These ligases associate with the cytoplasmic AAA-ATPase Cdc48p/p97, which is thought to support the release of malfolded proteins from the ER. Here, we characterize a yeast protein complex containing the ubiquitin...
متن کامل